During the past two decades, the controlled self-assembly of metal complexes has attracted a great deal of attention because of the potentially wide applications of the resulting supramolecular entities as functional materials. Homochiral porous coordination polymers with nanometer-sized cavities or channels are an important emerging subclass of such materials that are potentially suited for asymmetric catalysis and enantioselective processes. The most common approach for building homochiral supramolecular architectures is the rational combination of chiral multifunctional ligands as linkers and metal ion nodes bearing a specific coordination geometry. This approach, utilizing precoded rigid subunits with the proper bonding and angular information, leads to highly predictable products. However, the engineering of the ligand’s features, such as size, flexibility, and directionality of binding centers, is limited by the difficulty of its synthesis. Another level of tailorability in the design of chiral networks can be achieved by implementation of chiral metal–organic complexes as bridging ligands (the so-called metalloligands). The general simplicity of implementing chiral metal centers, is limited by the difficulty of its synthesis. Another level of tailorability in the design of chiral networks can be achieved by implementation of chiral metal–organic complexes as bridging ligands (the so-called metalloligands). The general simplicity of designing new multifunctional building blocks and the capability of generating interesting homo- or heteromultimetallic frameworks are some of the advantages of incorporating metalloligands in the design of functional materials.

We turned our attention to the surprisingly rarely examined cinchona alkaloid metal complexes, exploring their utility as chiral building blocks for the construction of homochiral networks; the first robust chiral hybrid organic–inorganic zeolite analogue based on the carboxylic derivative of quinine and its application for enantioseparation of small molecules was reported recently. Commercially available cinchona alkaloids are widely used in organocatalysis and occasionally in metal-mediated catalytic processes. For instance, cinchona alkaloids were examined for alkynylation of asymmetric addition to carbonyl compounds in the presence of Ti(OR)₂ or Et₂AlCl and a new type of bifunctional catalyst generated from the metal–organic self-assembly of substituted binols and cinchona alkaloids in combination with Ti(OR)₃ was developed for the efficient asymmetric hydrophosphonylation of aldehydes.

Following our recent report on a simple combination of R₂Zn compounds and bipyridines leading to a novel class of organometallic coordination polymers of unique topology, we became highly encouraged to replace common bipyridines as N-ditopic organic linkers by metal complexes with pyridyl units (Scheme 1). We describe here our initial results on the synthesis and characterization of the first cinchonine-based metalloligands and demonstrate their excellent capability for noncovalent-interaction-driven self-assembly into novel helical nanotubular architectures as well as the utility of their coordination-driven self-organization for constructing chiral coordination polymers.

Our primary attempts to isolate titanium derivatives of cinchonine (CN–H) failed, so as a next step we turned our attention to the corresponding aluminum complexes. The reaction of AlMe₃Cl or AlMe₃ with 2 equiv of CN–H afforded the bischelate complexes (CN)₂AlX [X = Cl (1a), Me (1b)] in essentially quantitative yield (Scheme 2). The two complexes were isolated by crystallization from toluene (1a) or THF (1b) solution as colorless needlelike crystals suitable for X-ray analysis; they crystallized in the chiral trigonal space group P3₁̄2₁ with Flack parameters close to zero [see the Supporting Information (SI)]. 1a and 1b are isostructural monomeric five-coordinate aluminum complexes sustained by one X group and two chelating cinchonine ligands (Figure 1a and Figures 1S and 2S in the SI). The aluminum centers adopt distorted trigonal bipyramidal geometries with O and X at the equatorial positions and quinuclidine N atoms at the axial positions (the corresponding geometric parameters of 1a and 1b are essentially similar). A more detailed analysis of the supramolecular structures of 1a and 1b shows a richness of inspiring unique features. In both compounds, (CN)₂AlX molecules are organized through noncovalent interactions into extended quasi-honeycomb networks with homochiral one-dimensional (1D) tubular channels (Figure 1c). The average inner diameter of the channels is ~8 Å, and the free space is filled by the solvent molecules (Figure 2). On the basis of PLATON calculations, the open channels constitute about 36.0% (2513.4 of 6980.4 Å³) and 37.5% (2678.4 of 7147.8 Å³) of the crystal volumes of 1a and 1b, respectively. Particularly fascinating is the pattern in which the tubular architecture is organized. The (CN)₂AlX molecules are arranged in a right-handed...
contains six (CN)2AlX units with a pitch of 22.35 Å. Moreover, the (CN)2AlX complexes utilize their unique shape to form helical double-helical motifs in which each strand is generated by C–H⋯π-bonded monomeric moieties connected to adjacent strand by the same class of interactions. The complete cycle in each strand is bonded monomeric moieties connected to adjacent strand by the 3D network. The channels’ inner diameter varies in the range ∼7–9 Å in response to the helical arrangement of the X substituents inside the channels. We note that crystallization of 1b from (±)-2-methyltetrahydrofuran (Me-THF) did not affect the structure of the resulting framework (see below). The above results demonstrate the inherent propensity of (CN)2AlX to utilize its molecular shape in noncovalent-interaction-driven self-assembly into chiral tubular architectures regardless of both the X substituent at Al center and the employed solvent. This observation is striking, as only a few examples of chiral nanotubular assemblies involving metal complexes have been reported to date.31,15

Thermogravimetric analysis (TGA) showed that the release of toluene molecules from polycrystalline 1a was completed by 140 °C. Moreover, the experimental powder X-ray diffraction patterns obtained from the resulting microcrystalline samples of 1a (Figure 3S in the SI) show that the release of toluene molecules is accompanied by a transition to a new crystalline phase having an as yet unidentified structure, and this new framework is maintained until 220 °C. The resulting solid product 1a’ (for the TGA profile, see Figure 4S in the SI) shows that the release of toluene molecules is accomplished by a transition to a new crystalline phase having an as yet unrecognized structure, and this new framework is maintained until 220 °C. The resulting solid product 1a’ is essentially nonporous and has a very low BET surface area (1.74 m² g⁻¹; see Figure 4S in the SI). Surprisingly, THF gradually leaves the porous network of 1b up to ∼220 °C (for the TGA profile, see Figure 5S in the SI) with the loss of crystallinity, and the resulting amorphous material is nonporous, as indicated by the N₂ sorption experiment. The numbers of encapsulated solvent molecules per (CN)₂AlX molecule (estimated from TGA and ‘H NMR data) are 2 and 1 for 1a and 1b, respectively.

Resolution of enantiomers through selective crystallization of diastereomeric inclusion compounds mediated by porous coordination polymers remains a challenging task.3 One can envisage that the observed high propensity of (CN)₂AlX complexes to form chiral cavities by interdigitated gear faces, along with the helical arrangement of exposed electronegative atoms inside the channels (such as Cl atoms in 1a), has potential value for the formation of inclusion compounds that discriminate between chiral guests. An additional advantage would be that products could be extracted by facile disassembly followed by host regeneration. Thus, we arranged an experiment to test whether a (CN)₂AlX system is capable of resolving an organic racemate by a two-step process involving inclusion crystallization of an (CN)₂AlX host in a mixture of the racemic guest followed by removal of the guest under reduced pressure. Complex 1b was dissolved in Me-THF and then crystallized from this solvent, and single crystals were collected for X-ray analysis. The crystal structure analysis revealed that the replacement of the THF solvent by Me-THF did not affect the supramolecular architecture of the resulting framework. The only difference was that the channels were filled by Me-THF molecules in disorder (see Figure 2S in the SI). Optical rotatory power measurements on the recovered Me-THF showed a small enantiomeric enrichment of ∼7% ee. As anticipated, after removal of the guest, crystals of 1b could be recycled and again utilized for the enrichment of another batch of Me-THF.

Complexes 1a and 1b contain two quinoline N centers capable of further coordination to metal centers; the quinoline rings are oriented in nearly parallel fashion with the N atoms ∼10.2 Å away from each other, and the links form an angle of ∼69°. These features, together with bulkiness and relative rigidity of the carbon backbones, make this type of complex a potential N,N-
processes that would occur in crystalline solids. Efforts to extend this strategy to other cinchona alkaloid ligands and metal centers to produce novel, controllable chiral supramolecular architectures with tailor-made properties, including enantioselective recognition and separation, are underway.

Acknowledgment. This work was supported by the State Committee for Scientific Research (Grants 3 T09B 037 28, PBZ-KBN-117/T08/06, and PBZ-KBN-118/T09/04).

Supporting Information Available: Additional experimental, spectroscopic, TGA, and N2 sorption data and crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References


(11) The reaction of Ti(0PPr)3 with 2 equiv of cinchonine in toluene solution was carried out and afforded a complex mixture that was difficult to separate and characterize.


